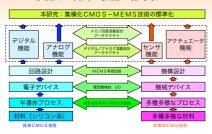


集積化MEMS技術による機能融合・低消費電力エレクトロニクス

東京大学 先端科学技術研究センター 年吉


本研究の学術的特色

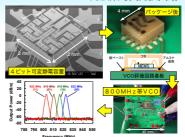
YFS

ところで MEMSのことをよく ご存じですか?

本研究の出口イメージ(応用)

集積化MEMS分野の背景 本研究の目的は技術の標準化

生精化MFMSとは. 半道休加丁 技術により微小な機械構造・セン 回路を集積化する高付加価値 エレクトロニクス技術のことです。

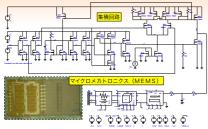

この技術は次世代の革新的製造技 術・省エネデバイス技術として期待 されていますが、従来は応用ごと の開発的要素が強く、設計・製造 技術の標準化や理工学としての体 系化が立ち遅れていました。

そこで本研究では、集積化MEM Sの設計・製造手法を標準化して、 材料から応用までを見通しよく設 1 ・製作する技術体系の構築に取 り組みました。

年吉 洋、「集積化MEMSのための解析・設計・製作技術プラットフォーム」 第23回マイクロマシン/MEMS展同時開催プログラム「半導体企業のためのMEMS講座」(<mark>専門講演)、2012年7月11日、東京ビッグサイト</mark>

A.コグニティブ無線通信 RF-MEMS周波数可変発振回路

NO


コグニティブ無線通信とは、通信帯域 の使用状況等をつねにモニタして、最 適な通信条件になるように機器の周波 数やアンテナ接続方向などをチュー ングする通信方式のことです。

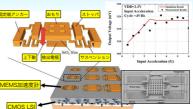
本研究ではRF-MEMS(Radio Frequency - MEMS) 技術により静電 駆動型の可変デジタルキャパシタを製 作し、それを800MHz帯の周波数可変 発振回路に応用しました。

本研究は、日本無線株式会社との共同 研究として実施しました。

駆動電圧35V、容量値0.55~0.73pF、1~4ビット 構成、VCOのQ値60、位相ノイズ -101dBc/Hz

2. 集積化MEMSの統合設計法 回路シミュレータ上で等価回路解析

Konishi, K. Machida, S. Maruyama, M. Mita, K. Masu, and H. Toshiyoshi, IEEE/ASME J. icroelectromech. Syst., vol. 22, no. 3, Jun. 2013, pp. 755-767.

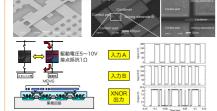

MEMS機械構造を有限要素法で ノード点数が多すぎ 解析しても、 るために電気回路との統合設計が できません。

そこで本研究では、電気回路シ ュレータ上でMEMS機械構造 の等価回路(運動方程式)を解く 手法を構築し、フリーウェアとし -般公開しました。

また、世界標準回路設計CADの Cadenceにも移植しました。

B. モノ・ひとモニタリング 高感度MEMS加速度センサ

加速度センサの応用先は、 フォンを超えてさらに広がります。近 い将来には、すべての人工物に加速度 センサをつけて、モノ・ひとの動きを 検出することで人間の生活をアシスト する時代が来るでしょう。

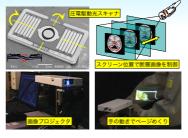

そこで本研究では、人間の動きに合わせて1G未満から数Gの広範囲の加速 度を検出可能なセンサを集積化MEM Sで実現しました。

本研究は、NTT-AT株式会社、東 京工業大学・益研究室との共同研究と して実施しました。

0.35umCMOS、Vdd=3.3V、検出範囲0.5G~6G、 金メッキ構造によりブラウンノイズ低減11.7uG/√Hz

f. Konishi, D. Yamane, T. Matsuhsima, K. Machida, K. Masu, and H. Toshiyoshi, "An arrayed accelerometer device of a wide range of detection for ntegrated CMOS-MEMS technology," Jpn. J. Appl. Phys., vol. 53, 027202, 2014, pp. 027202.1-027202.9.

3. 集積化MEMSの製作法 ポストCMOS-MEMSプロセス

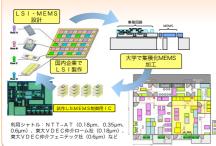


幅広く使える集積化MEMSプロ セスとして、CMOS集積回路を製 作した後のウエハに金属薄膜(ス パッタ等)や金属メッキ膜を用い てMEMS構造を製作する手法を 開発しました。

その応用例として、集積回路中の不 要な電源を遮断する静電駆動型パ ートスイッチや、高周波無線 通信用の可変容量などを設計・製 作しました。

また、MEMS素子を用いてNOT、 NAND、NOR、XOR、XNOR等の 論理演算が可能であることを理論 的・実験的に検証しました。

どこでも画像ディスプレィ レーザー走査MEMS光スキャナ



RGBのレーザー光をMEMS光ス キャナで走査すると、どこにでも焦点 のあう超小型の投写型画像ディスプ レィを構成できます。しかも、描画用のレーザー光源をそのまま用いて、 レーザー距離計測も可能です。

この特徴を生かして、スクリーン位置 やユーザーの身振り手振りを検出して 画像を制御するタイプのインタラク ティブ画像ディスプレィを作りました。 本研究は、スタンレー電気株式会社と の共同研究として実施しました。

スキャナ駆動電圧40V、画像VGAクラス、測長距離 20cm~60cm、距離分解能2cm

4. 集積化MEMS共同試作体制 ウエハ相乗りシャトルサービス

LSIウエハを丸ごと作ろうとすると膨大な費用が発生します。また、 どこの大学にもMEMSプロセス 施設があるとは限りません。

そこで本研究では国内のLSI製 造企業が提供するウエハ共有方式 のシャトルサービスを利用して回路 を設計し、その上にMEMS構造 を集積化する手法を研究しました。 そのトにMFMS構造

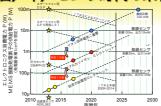
また、本研究経費によりMEMS ポストプロセスの装置を導入し、 産学の共同研究者グループが共同で 利用できる体制を整備しました。

医療用の光断層観察 MEMS波長可変光源

赤外米の波長可変光源は光ファイ バ通信用途だけでなく、医療用の 光断層観察(OCT=Optical Coherence Tomography) にも 広がりつつあります。

本研究では高速で動作するMEM S光スキャナを開発して、動画像も 撮影可能なOCTシステムを構成 しました。

本研究は、サンテック株式会社と の共同研究として実施しました。


スキャナ駆動電圧70V、スキャナ共振周波数 70kHz、波長可変速度140kHz、中心波長1.3um 波長帯域100nm、出力20mW、観察深さ2mm 画像分解能5~10um、フレームレート50fps

本研究の2030年頃の応用展開 トリリオン(1兆個/年) センサ時代の未利用エネルギー回収技術として

近い将来に、地球上で年間1兆個ものセンサを消 費する「トリリオン・センサ」時代が到来すると 言われています。これは東京都の面積と人口で言 うと、距離 1 メートルに 1 個の割合でセンサが存 在することを意味しています。

そのような時代に必要な技術として、本研究で実施したようなMEMSセンサ技術・無線通信技術のほかに、電力線や1次電池に頼らずにエネルギ を供給する技術が挙げられます。

半導体集積回路の微細化にともなって、LSIの 消費電力は年々低くなっています。一方MEMS 分野では、風や振動などの環境から発電するエナ ジー・ハーベスト技術の研究が進められています。

現在研究代表者らが取り組み中の永久電荷(エレ クトレット) 形成技術や静電容量増大技術により、 クトレット)ル成XMIで財場付業有人XMIになっ、 2030年頃には至近距離(10メートル)無線 通信型センサーノードのエネルギーは、MEMS 型の振動発電機で供給できるようになるでしょう。